50 Soal Dan Jawaban Integral



Induksi Dan Fluks Magnetik Bersama Contoh Soal Dan Jawaban

Pembahasan Soal UN Integral Fungsi Aljabar

Pembahasan soal-soal Ujian Nasional (UN) SMA bidang studi Matematika IPA untuk materi pembahasan Integral Fungsi Aljabar yang meliputi integral tentu, integral tak tentu dan integral substitusi dari fungsi-fungsi aljabar. Rumus-rumus integral yang digunakan :

1. ∫ axn dx = \(\mathrm{\frac{a}{n+1}}\)xn+1 + C

2. ∫ (ax + b)n dx = \(\mathrm{\frac{1}{a(n+1)}}\)(ax + b)n+1 + C 3. ∫ f(x).g(x)n dx = \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C     dengan k = \(\mathrm{\frac{f(x)}{g'(x)}}\) dan k konstan.

1. UN 2005

Hasil dari \(\mathrm{\int_{0}^{1}3x\sqrt{3x^{2}+1}\:dx=...}\)

A.  \(\frac{7}{2}\)

B.  \(\frac{8}{3}\)

C.  \(\frac{7}{3}\) D.  \(\frac{4}{3}\) E.  \(\frac{2}{3}\)

Pembahasan :

∫ 3x(3x2 + 1)\(^{\frac{1}{2}}\) dx n = \(\frac{1}{2}\) k = \(\mathrm{\frac{3x}{6x}}\) = \(\frac{1}{2}\)

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{\frac{1}{2}}{\frac{1}{2}+1}\) (3x2 + 1)\(\mathrm{^{\frac{1}{2}+1}}\) + C ⇒ \(\frac{1}{3}\)(3x2 + 1)\(\mathrm{^{\frac{3}{2}}}\) + C Untuk batas x = 0 sampai x = 1

⇒ \(\frac{1}{3}\)(3.12 + 1)\(^{\frac{3}{2}}\) − \(\frac{1}{3}\)(3.02 + 1)\(^{\frac{3}{2}}\)

⇒ \(\frac{8}{3}\) − \(\frac{1}{3}\) = \(\frac{7}{3}\)

Jawaban : C

2. UN 2007

Diketahui \(\mathrm{\int_{a}^{3}}\) (3x2 + 2x + 1) dx = 25. Nilai \(\mathrm{\frac{1}{2}a=...}\) A.  −4 B.  −2 C.  −1 D.  1 E.  2

Pembahasan :

\(\mathrm{\int_{a}^{3}}\) (3x2 + 2x + 1) dx = 25 ⇔ [x3 + x2 + x\(\mathrm{]_{a}^{3}}\) = 25 ⇔ (33 + 32 + 3) − (a3 + a2 + a) = 25 ⇔ a3 + a2 + a − 14 = 0 Nilai a yang mungkin adalah faktor dari −14, yaitu : ±1, ±2, ±7, ±14. Nilai a yang memenuhi adalah a = 2 karena

23 + 22 + 2 − 14 = 0

Jadi, \(\frac{1}{2}\)a = \(\frac{1}{2}\). 2 = 1

Jawaban : D

3. UN 2008

Hasil dari \(\mathrm{\int_{1}^{4}\frac{2}{x\sqrt{x}}\:dx=...}\) A.  −12 B.  −4 C.  −3 D.  2 E.  \(\frac{3}{2}\)

Pembahasan :

⇒ \(\mathrm{\int_{1}^{4}}\) 2x\(^{-\frac{3}{2}}\) dx = \(\mathrm{\left [ \frac{2}{-\frac{3}{2}+1}x^{-\frac{3}{2}+1} \right ]_{1}^{4}}\) = \(\mathrm{\left [-4x^{-\frac{1}{2}}  \right ]_{1}^{4}}\) = \(\mathrm{\left [\frac{-4}{\sqrt{x}}  \right ]_{1}^{4}}\) = \(\frac{-4}{\sqrt{4}}-\frac{-4}{\sqrt{1}}\) = −2 − (−4) = 2

Jawaban : D

4. UN 2009

Hasil dari ∫ (2x − 1)(x2 − x + 3)3 dx = ... A.  \(\frac{1}{3}\)(x2 − x + 3)3 + C B.  \(\frac{1}{4}\)(x2 − x + 3)3 + C C.  \(\frac{1}{4}\)(x2 − x + 3)4 + C D.  \(\frac{1}{2}\)(x2 − x + 3)4 + C E.  (x2 − x + 3)4 + C

Pembahasan :

∫ (2x − 1)(x2 − x + 3)3 dx n = 3 k = \(\mathrm{\frac{2x-1}{2x-1}}\) = 1

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{1}{3+1}\)(x2 − x + 3)3+1 + C ⇒ \(\frac{1}{4}\)(x2 − x + 3)4 + C

Jawaban : C

5. UN 2009

Diketahui \(\mathrm{\int_{1}^{a}}\) (2x − 3) dx = 12 dan a > 0. Nilai a = ... A.  2 B.  3 C.  5 D.  7 E.  10

Pembahasan :

\(\mathrm{\int_{1}^{a}}\) (2x − 3) dx = 12

⇔ [x2 − 3x\(\mathrm{]_{1}^{a}}\) = 12

⇔ (a2 − 3a) − (12 − 3.1) = 12 ⇔ a2 − 3a − 10 = 0 Nilai a yang mungkin adalah faktor dari −10, yaitu : ±1, ±2, ±5, ±10. Nilai a yang memenuhi adalah a = 5 karena

52 − 3.5 − 10 = 0

Jawaban : C

6. UN 2009

Hasil dari ∫ (6x2 − 4x)\(\mathrm{\sqrt{x^{3}-x^{2}-1}}\) dx = ... A.  \(\mathrm{\frac{2}{3}\sqrt[3]{\left (x^{3}-x^{2}-1  \right )^{2}}+C}\) B.  \(\mathrm{\frac{2}{3}\sqrt{\left (x^{3}-x^{2}-1  \right )^{3}}+C}\) C.  \(\mathrm{\frac{4}{3}\sqrt{\left (x^{3}-x^{2}-1  \right )^{3}}+C}\) D.  \(\mathrm{\frac{4}{3}\sqrt[3]{\left (x^{3}-x^{2}-1  \right )^{2}}+C}\) E.  \(\mathrm{\frac{2}{3}\sqrt{\left (x^{3}-x^{2}-1  \right )^{2}}+C}\)

Pembahasan :

∫ (6x2 − 4x)(x3 − x2 − 1)\(^{\frac{1}{2}}\) dx n = \(\frac{1}{2}\) k = \(\mathrm{\frac{6x^{2}-4x}{3x^{2}-2x}}\) = \(\mathrm{\frac{2(3x^{2}-2x)}{3x^{2}-2x}}\) = 2

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{2}{\frac{1}{2}+1}\)(x3 − x2 − 1)\(^{\frac{1}{2}+1}\) + C ⇒ \(\frac{4}{3}\)(x3 − x2 − 1)\(^{\frac{3}{2}}\) + C ⇒ \(\mathrm{\frac{4}{3}\sqrt{\left (x^{3}-x^{2}-1  \right )^{3}}+C}\)

Jawaban : C

7. UN 2009

Diketahui \(\mathrm{\int_{1}^{p}}\) (x − 1)2 dx = 2\(\frac{2}{3}\). Nilai p yang memenuhi adalah... A.  1 B.  1\(\frac{1}{3}\) C.  3 D.  6 E.  9

Pembahasan :

\(\mathrm{\int_{1}^{p}}\) (x − 1)2 dx = \(\frac{8}{3}\) ⇔ \(\mathrm{\left [ \frac{1}{1(2+1)}(x-1)^{2+1} \right ]_{1}^{p}}\)  = \(\frac{8}{3}\) ⇔ \(\mathrm{\left [ \frac{1}{3}(x-1)^{3} \right ]_{1}^{p}}\)  = \(\frac{8}{3}\)

⇔ \(\frac{1}{3}\)(p − 1)3 − \(\frac{1}{3}\)(1 − 1)3  = \(\frac{8}{3}\)

⇔ \(\frac{1}{3}\)(p − 1)3 = \(\frac{8}{3}\) ⇔ (p − 1)3 = 8 ⇔ (p − 1)3 = 23 ⇔ p − 1 = 2 ⇔ p = 3

Jawaban : C

8. UN 2010

Nilai dari \(\mathrm{\int_{-1}^{3}}\)2x(3x + 4) dx = ... A.  88 B.  84 C.  56 D.  48 E.  46

Pembahasan :

\(\mathrm{\int_{-1}^{3}}\)2x(3x + 4) dx

⇒ \(\mathrm{\int_{-1}^{3}}\)(6x2 + 8x) dx

= \(\mathrm{\left [ 2x^{3}+4x^{2} \right ]_{-1}^{3}}\)

= (2.33 + 4.32) − (2(−1)3 + 4(−1)2)

= 90 − 2 = 88

Jawaban : A

9. UN 2011

Hasil \(\mathrm{\int_{2}^{4}}\)(−x2 + 6x − 8) dx = ... A.  \(\frac{38}{3}\) B.  \(\frac{26}{3}\) C.  \(\frac{20}{3}\) D.  \(\frac{16}{3}\) E.  \(\frac{4}{3}\)

Pembahasan :

\(\mathrm{\int_{2}^{4}}\)(−x2 + 6x − 8) dx = \(\mathrm{\left [ -\frac{1}{3}x^{3}+3x^{2}-8x \right ]_{2}^{4}}\)

= (−\(\frac{1}{3}\).43 + 3.42 − 8.4) − (−\(\frac{1}{3}\).23 + 3.22 − 8.2)

= \(\frac{4}{3}\)

Jawaban : E

10. UN 2011

Hasil \(\mathrm{\int \frac{2x+3}{\sqrt{3x^{2}+9x-1}}\:dx=...}\) A.  \(\mathrm{2\sqrt{3x^{2}+9x-1}+C}\) B.  \(\mathrm{\frac{1}{3}\sqrt{3x^{2}+9x-1}+C}\) C.  \(\mathrm{\frac{2}{3}\sqrt{3x^{2}+9x-1}+C}\) D.  \(\mathrm{\frac{1}{2}\sqrt{3x^{2}+9x-1}+C}\) E.  \(\mathrm{\frac{3}{2}\sqrt{3x^{2}+9x-1}+C}\)

Pembahasan :

∫ (2x + 3)(3x2 + 9x − 1)\(^{-\frac{1}{2}}\) dx n = \(-\frac{1}{2}\) k = \(\mathrm{\frac{2x+3}{6x+9}}\) = \(\mathrm{\frac{2x+3}{3(2x+3)}}\) = \(\frac{1}{3}\)

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{\frac{1}{3}}{-\frac{1}{2}+1}\)(3x2 + 9x − 1)\(^{-\frac{1}{2}+1}\) + C ⇒ \(\frac{2}{3}\)(3x2 + 9x − 1)\(^{\frac{1}{2}}\) + C ⇒ \(\mathrm{\frac{2}{3}\sqrt{\left (3x^{2}+9x-1  \right )}+C}\)

Jawaban : C

11. UN 2012

Hasil dari \(\mathrm{\int 3x\sqrt{3x^{2}+1}\:dx=...}\) A.  \(\mathrm{-\frac{2}{3}(3x^{2}+1)\sqrt{3x^{2}+1}+C}\) B.  \(\mathrm{-\frac{1}{2}(3x^{2}+1)\sqrt{3x^{2}+1}+C}\) C.  \(\mathrm{\frac{1}{3}(3x^{2}+1)\sqrt{3x^{2}+1}+C}\) D.  \(\mathrm{\frac{1}{2}(3x^{2}+1)\sqrt{3x^{2}+1}+C}\) E.  \(\mathrm{\frac{2}{3}(3x^{2}+1)\sqrt{3x^{2}+1}+C}\)

Pembahasan :

∫ 3x(3x2 + 1)\(^{\frac{1}{2}}\) dx n = \(\frac{1}{2}\) k = \(\mathrm{\frac{3x}{6x}}\) = \(\frac{1}{2}\)

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{\frac{1}{2}}{\frac{1}{2}+1}\) (3x2 + 1)\(\mathrm{^{\frac{1}{2}+1}}\) + C ⇒ \(\frac{1}{3}\)(3x2 + 1)\(\mathrm{^{\frac{3}{2}}}\) + C ⇒ \(\frac{1}{3}\)(3x2 + 1)\(\mathrm{\sqrt{3x^{2}+1}}\) + C

Jawaban : C

12. UN 2012

Nilai dari \(\mathrm{\int_{1}^{4}}\)(x2 − 2x + 2) dx = ... A.  12 B.  14 C.  16 D.  18 E.  20

Pembahasan :

\(\mathrm{\int_{1}^{4}}\)(x2 − 2x + 2) dx = \(\mathrm{\left [ \frac{1}{3}x^{3}-x^{2}+2x \right ]_{1}^{4}}\)

= (\(\frac{1}{3}\).43 − 42 + 2.4) − (\(\frac{1}{3}\).13 − 12 + 2.1)

= 12

Jawaban : A

13. UN 2013

Hasil dari \(\mathrm{\int_{0}^{2}}\)3(x + 1)( x − 6) dx = ... A.  −58 B.  −56 C.  −28 D.  −16 E.  −14

Pembahasan :

\(\mathrm{\int_{0}^{2}}\)3(x + 1)( x − 6) dx

3\(\mathrm{\int_{0}^{2}}\)(x2 − 5x − 6) dx

= 3\(\mathrm{\left [ \frac{1}{3}x^{3}-\frac{5}{2}x^{2}-6x \right ]_{0}^{2}}\)

= 3[(\(\frac{1}{3}\).23 − \(\frac{5}{2}\).22 − 6.2) − 0]

= 3. \(\frac{-58}{3}\) = −58

Jawaban : A

14. UN 2013

Hasil dari \(\mathrm{\int \frac{2x}{\sqrt{x^{2}+1}}\:dx=...}\) A.  \(\mathrm{\frac{1}{3}\sqrt{x^{2}+1}+C}\) B.  \(\mathrm{\frac{1}{2}\sqrt{x^{2}+1}+C}\) C.  \(\mathrm{2\sqrt{x^{2}+1}+C}\) D.  \(\mathrm{3\sqrt{x^{2}+1}+C}\) E.  \(\mathrm{6\sqrt{x^{2}+1}+C}\)

Pembahasan :

∫ 2x(x2 + 1)\(^{-\frac{1}{2}}\) dx n = \(-\frac{1}{2}\) k = \(\mathrm{\frac{2x}{2x}}\) = 1

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{1}{-\frac{1}{2}+1}\)(x2 + 1)\(^{-\frac{1}{2}+1}\) + C ⇒ 2(x2 + 1)\(^{\frac{1}{2}}\) + C ⇒ 2\(\mathrm{\sqrt{x^{2}+1}}\) + C

Jawaban : C

15. UN 2014

Hasil ∫ (6x − 12)\(\mathrm{\sqrt{x^{2}-4x+8}}\) dx = ...

A.  \(\frac{1}{3}\)(x2 − 4x + 8)\(^{\frac{3}{2}}\) + C

B.  \(\frac{1}{2}\)(x2 − 4x + 8)\(^{\frac{3}{2}}\) + C C.  \(\frac{2}{3}\)(x2 − 4x + 8)\(^{\frac{3}{2}}\) + C D.  (x2 − 4x + 8)\(^{\frac{3}{2}}\) + C E.  2(x2 − 4x + 8)\(^{\frac{3}{2}}\) + C

Pembahasan :

∫ (6x − 12)(x2 − 4x + 8)\(^{\frac{1}{2}}\) dx n = \(\frac{1}{2}\) k = \(\mathrm{\frac{6x-12}{2x-4}}\) = \(\mathrm{\frac{3(2x-4)}{2x-4}}\) = 3

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{3}{\frac{1}{2}+1}\)(x2 − 4x + 8)\(^{\frac{1}{2}+1}\) + C ⇒ 2(x2 − 4x + 8)\(^{\frac{3}{2}}\) + C

Jawaban : E

16. UN 2014

Hasil \(\mathrm{\int_{0}^{1}}\)(x3 + 2x − 5) dx = ... A.  \(-\frac{16}{4}\) B.  \(-\frac{15}{4}\) C.  0 D.  \(\frac{15}{4}\) E.  \(\frac{16}{4}\)

Pembahasan :

\(\mathrm{\int_{0}^{1}}\)(x3 + 2x − 5) dx = \(\mathrm{\left [ \frac{1}{4}x^{4}+x^{2}-5x \right ]_{0}^{1}}\)

= (\(\frac{1}{4}\).14 + 12 − 5.1) − 0

= \(-\frac{15}{4}\)

Jawaban : B

17. UN 2015 Hasil ∫ 4x(4x2 − 3)4 dx = ... A.  \(\frac{1}{10}\)(4x2 − 3)5 + C B.  \(\frac{1}{5}\)(4x2 − 3)5 + C C.  \(\frac{2}{5}\)(4x2 − 3)5 + C D.  (4x2 − 3)5 + C E.  2(4x2 − 3)5 + C

Pembahasan :

∫ 4x(4x2 − 3)4 dx n = 4 k = \(\mathrm{\frac{4x}{8x}}\) = \(\frac{1}{2}\)

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{\frac{1}{2}}{4+1}\)(4x2 − 3)4+1 + C ⇒ \(\frac{1}{10}\)(4x2 − 3)5 + C

Jawaban : A

18. UN 2015

Nilai dari \(\mathrm{\int_{1}^{4}\left ( 3\sqrt{x}-\frac{1}{\sqrt{x}} \right )\:dx}\) adalah... A.  20 B.  12 C.  8 D.  4 E.  2

Pembahasan :

\(\mathrm{\int_{1}^{4}}\)(3x\(^{\frac{1}{2}}\) − x\(^{-\frac{1}{2}}\)) dx = \(\mathrm{\left [ \frac{3}{\frac{1}{2}+1}x^{\frac{1}{2}+1}-\frac{1}{-\frac{1}{2}+1}x^{-\frac{1}{2}+1} \right ]_{1}^{4}}\) = \(\mathrm{\left [ 2x^{\frac{3}{2}}-2x^{\frac{1}{2}} \right ]_{1}^{4}}\) = \(\mathrm{\left [ 2x\sqrt{x}-2\sqrt{x} \right ]_{1}^{4}}\) = (2.4√4 − 2√4) − (2.1√1 − 2√1) = 12 − 0 = 12

Jawaban : B

19. UN 2016

Hasil dari ∫ x(3x − 5)4 dx = ... A.  \(-\frac{1}{54}\) (1 + 3x)(3x − 5)5 + C B.  \(-\frac{1}{108}\) (1 − 3x)(3x − 5)5 + C C.  \(-\frac{1}{270}\) (1 + 3x)(3x − 5)5 + C D.  \(\frac{1}{108}\) (1 − 3x)(3x − 5)5 + C E.  \(\frac{1}{54}\) (1 + 3x)(3x − 5)5 + C

Pembahasan :

∫ x(3x − 5)4 dx Misalkan : u = 3x − 5 → x = \(\mathrm{\frac{u+5}{3}}\) du = 3 dx → dx = \(\mathrm{\frac{du}{3}}\) Substitusi :

⇒ ∫ \(\mathrm{\frac{u+5}{3}}\)u4 \(\mathrm{\frac{du}{3}}\)

⇒ \(\frac{1}{9}\)∫ (u5 +5u4) du = \(\frac{1}{9}\) (\(\frac{1}{6}\)u6 + u5 ) + C = \(\frac{1}{9}\) (\(\frac{1}{6}\)u + 1)u5 + C = \(\frac{1}{9}\) (\(\mathrm{\frac{u+6}{6}}\))u5 + C = \(\frac{1}{54}\) (u + 6)u5 + C = \(\frac{1}{54}\) (3x − 5 + 6)(3x − 5)5 + C = \(\frac{1}{54}\) (3x + 1)(3x − 5)5 + C

Jawaban : E

20. UN 2016

Nilai dari \(\mathrm{\int_{-1}^{2}}\)(3x2 + 6x − 1) dx = ... A.  3 B.  5 C.  9 D.  15 E.  18

Pembahasan :

\(\mathrm{\int_{-1}^{2}}\)(3x2 + 6x − 1) dx = \(\mathrm{\left [ x^{3}+3x^{2}-x \right ]_{-1}^{2}}\)

= (23 + 3.22 − 2) − (13 + 3.12 − 1)

= 18 −3 = 15

Jawaban : D

21. UN 2016

Hasil dari \(\mathrm{\int \frac{6x-9}{\sqrt{x^{2}-3x-5}}\:dx}\) adalah... A.  \(\mathrm{2\sqrt{x^{2}-3x-5}+C}\) B.  \(\mathrm{3\sqrt{x^{2}-3x-5}+C}\) C.  \(\mathrm{6\sqrt{x^{2}-3x-5}+C}\) D.  \(\mathrm{9\sqrt{x^{2}-3x-5}+C}\) E.  \(\mathrm{18\sqrt{x^{2}-3x-5}+C}\)

Pembahasan :

∫ (6x − 9)(x2 − 3x − 5)\(^{-\frac{1}{2}}\) dx n = \(-\frac{1}{2}\) k = \(\mathrm{\frac{6x-9}{2x-3}}\) = \(\mathrm{\frac{3(2x-3)}{2x-3}}\) = 3

⇒ \(\mathrm{\frac{k}{n+1}}\) g(x)n+1 + C

⇒ \(\frac{3}{-\frac{1}{2}+1}\)(x2 − 3x − 5)\(^{-\frac{1}{2}+1}\) + C ⇒ 6(x2 − 3x − 5)\(^{\frac{1}{2}}\) + C ⇒ 6\(\mathrm{\sqrt{x^{2}-3x-5}}\) + C

Gallery 50 Soal Dan Jawaban Integral

Showme Contoh Integral

Auditing Solutions Chapter 1 20 Acct20075 Cqu Studocu

Doc Soal Soal Integral Ayu Puspa Academia Edu

Soal Jawab Integral Facebook

Integral Of X 2 Cos X By Parts

Contoh Soal Integral Tentu Tak Tentu Substitusi Parsial

Kunci Jawaban Pr Inggris 12 2013 Pdf Docshare Tips

Contoh Soal Dan Pembahasan Tentang Integral Ajar Hitung

Pdf Pembahasan Soal 13 3 Kalkulus 2 Purcell Revisi

50 Soal Dan Jawaban Integral Pdf Merger Gababl

Jawaban Soal Latihan1mekanika

Folie 1

Contoh Soal Dan Jawaban Integral Kumpulan Soal Pelajaran 7

Kinematika Vektor Fisika Kelas 11 Konsep Rumus Dan

Soal Integral Dan Pembahasan

Integral Tak Tentu Substitusi Parsial Pengertian Dan

Supporting 7 Th Grade Students Understanding Of The Area

Showme Contoh Integral

Bab 6 Transformasi Laplace 8jlk8m7ow0l5

Contoh Soal Integral Tentu Tak Tentu Substitusi Parsial

Elektronika Daya Soal Dan Jawaban

Bank Soal Dan Pembahasan Matematika Dasar Integral Fungsi


Belum ada Komentar untuk "50 Soal Dan Jawaban Integral"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel