Rumus Limit Tak Hingga



Rumus Cepat Mengerjakan Limit Tak Hingga Idschool

Penyelesaian Limit Tak Hingga

         Blog Koma - Pada artikel kali ini kita akan membahas materi Penyelesaian Limit Tak Hingga. Limit tak hingga ini maksudnya bisa hasil limitnya adalah tak hingga ($ \infty $) atau limit dimana variabelnya menuju tak hingga ($ x \to \infty $). Untuk memudahkan, silahkan juga baca materi "Pengertian Limit Fungsi" dan "Penyelesaian Limit Fungsi Aljabar". Khusus pada limit tak hingga pada artikel ini kita akan lebih menitik beratkan pada fungsi aljabar saja. Untuk limit tak hingga fungsi trigonometri akan kita bahas pada artikel lain secara khusus dan lebih mendalam.

Hasil Limitnya Tak hingga

       Suatu limit hasilnya tak hingga ($\infty$) jika hasil limitnya semakin membesar menuju tak hingga, bisanya terjadi ketika pembaginya adalah 0 ($ \frac{1}{0} = \infty $ ) . Berikut teorinya : $ \displaystyle \lim_{x \to \, (+0) } \frac{1}{x^n} = + \infty \, $ dan $ \, \displaystyle \lim_{x \to \, (-0) } \frac{1}{x^n} = \left\{ \begin{array}{cc} +\infty & , \text{ untuk } \, n \, \text{ genap} \\ -\infty & , \text{ untuk } \, n \, \text{ ganjil} \end{array} \right. $ dengan $ n \, $ bilangan asli.

Catatan : Jika pangkatnya genap ($n \, $ genap) maka hasilnya selalu positif.

Contoh : 1). Tentukan nilai $ \displaystyle \lim_{x \to 2 } \frac{1}{(x-2)^2} \, $ ? Penyelesaian : *). Berikut grafik dari fungsi $ f(x) = \frac{1}{(x-2)^2} $
Dari tabel terlihat bahwa untuk $ x \, $ mendekati 2, maka hasil fungsinya (nilai $y $ ) semakin besar menuju tak hingga. Jadi, hasil dari $ \displaystyle \lim_{x \to 2 } \frac{1}{(x-2)^2} = \infty $ 2). Tentukan nilai limit bentuk berikut : a). $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{(x-5)^5} \, \, \, $ b). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^8} \, \, \, $ c). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^7} $ Penyelesaian : a). Karena $ x \to 5^+ \, $ (artinya $ x \, $ mendekati 5 dari kanan, sehingga nilai $ x - 5 \, $ positif. $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{(x-5)^5} = \frac{5+2}{(5^+ - 5)^5} = \frac{7}{(+0)^5} = + \infty $ b). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^8} = \frac{3}{(3^- - 3)^8 } = \frac{3}{(-0)^8} = \frac{3}{0} = +\infty $ c). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^7} =\frac{3}{(3^- - 3)^7 } = \frac{3}{(-0)^7} = \frac{3}{-0} = -\infty $

Penyelesaian Limit di Tak Hingga

       Untuk menyelesaikan limit menuju tak hingga ($ x \to \infty $ ), kita gunakan limit dasarnya yaitu : $ \, \, \displaystyle \lim_{x \to \infty } \frac{a}{x^n} = 0 $ dengan $ a \, $ bilangan real dan $ n \, $ bilangan asli.        Artinya kita harus mengarahkan bentuk limit di tak hingga menjadi rumus dasar di atas dengan cara : i). Buat fungsinya menjadi bentuk pecahan, jika bentuknya dalam akar maka kalikan dengan bentuk sekawannya (merasionalkan).

ii). Bagi variabelnya dengan pangkat tertinggi.

Contoh : 3). Tentukan hasil limit di tak hingga berikut : a). $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b). $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c). $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d). $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ Penyelesaian : a). Bagi dengan $ x^3 \, $ untuk pembilang dan penyebutnya. $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3 + 3x^2 + 5}{x^3}}{\frac{5x^3 - 4x + 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{5}{x^3} }{\frac{5x^3 }{x^3} - \frac{ 4x }{x^3} + \frac{ 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{3}{x} + \frac{5}{x^3} }{5 - \frac{ 4 }{x^2} + \frac{ 1}{x^3} } \\ & = \frac{ 2 + \frac{3}{\infty} + \frac{5}{\infty ^3} }{5 - \frac{ 4 }{\infty ^2} + \frac{ 1}{\infty ^3} } \\ & = \frac{ 2 + 0 + 0 }{5 - 0 + 0 } \\ & = \frac{ 2 }{5 } \\ \end{align} $ Sehingga hasilnya $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{ 2 }{5 } $ b). Bagi dengan $ x^8 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} & = \displaystyle \lim_{x \to \infty } \frac{\frac{-2x^2 - 5}{x^8}}{\frac{5x^8 - 4x + 3}{x^8} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{-2}{x^6} - \frac{5}{x^8} }{ 5 - \frac{4}{x^7} + \frac{3}{x^8} } \\ & = \frac{ \frac{-2}{\infty ^6} - \frac{5}{\infty ^8} }{ 5 - \frac{4}{\infty ^7} + \frac{3}{\infty^8} } \\ & = \frac{ 0 - 0 }{ 5 - 0 + 0 } \\ & = \frac{ 0 }{ 5 } \\ & = 0 \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = 0 $ c). Bagi dengan $ x^5 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } & = \displaystyle \lim_{x \to \infty } \frac{\frac{x^5 - 2x^3 + 5x - 1}{x^5}}{\frac{3x^2 - 4x + 1 }{x^5}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 1 - \frac{2}{x^2} + \frac{5}{x^4} - \frac{1}{x^5} }{ \frac{3}{x^3} - \frac{4}{x^4} + \frac{1}{x^5} } \\ & = \frac{ 1 - \frac{2}{\infty ^2} + \frac{5}{\infty ^4} - \frac{1}{\infty ^5} }{ \frac{3}{\infty ^3} - \frac{4}{\infty ^4} + \frac{1}{\infty ^5} } \\ & = \frac{ 1 - 0 + 0 - 0 }{ 0 - 0 + 0 } \\ & = \frac{ 1 }{ 0} \\ & = \infty \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \infty $ d). Bagi dengan $ x \, $ untuk pembilang dan penyebutnya, $\begin{align} \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x + 1}{x}}{ \frac{\sqrt{9x^2 + 2x - 7}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \frac{\sqrt{9x^2 + 2x - 7}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{\frac{9x^2 + 2x - 7}{x^2} } } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{ 9 + \frac{2}{x} - \frac{7}{x^2} } } \\ & = \frac{ 2 + \frac{1}{\infty} }{ \sqrt{ 9 + \frac{2}{\infty} - \frac{7}{\infty ^2} } } \\ & = \frac{ 2 + 0 }{ \sqrt{ 9 + 0 - 0 } } \\ & = \frac{ 2 }{ \sqrt{ 9 } } \\ & = \frac{ 2 }{3} \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \frac{ 2 }{3} $ e). Kali sekawan agar terbentuk pecahan dan bagi $ x $ $ \begin{align} & \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \times \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ (4x^2 +2x-3) - (4x^2 - x + 3) }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3x - 6 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{ 3x - 6 }{x}}{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} }{\sqrt{x^2}} + \frac{ \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \sqrt{4 +\frac{2}{x} - \frac{3}{x^2} } + \sqrt{4 - \frac{1}{x} + \frac{3}{x^2}} } \\ & = \frac{ 3 - \frac{6}{\infty} }{ \sqrt{4 +\frac{2}{\infty} - \frac{3}{\infty ^2} } + \sqrt{4 - \frac{1}{\infty} + \frac{3}{\infty ^2}} } \\ & = \frac{ 3 - 0}{ \sqrt{4 + 0 - 0 } + \sqrt{4 - 0 + 0 } } \\ & = \frac{ 3 }{ \sqrt{4 } + \sqrt{4 } } \\ & = \frac{ 3 }{ 2 + 2 } \\ & = \frac{ 3 }{ 4 } \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{ 3 }{ 4 } $

Penyelesaian Limit di Tak Hingga Yang lebih praktis

       Berikut cara menyelesaikan limit di tak hingga yang lebih mudah : $\clubsuit $ Limit tak hingga pecahan : Misalkan fungsinya $ f(x) = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ g(x) = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya : $ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n < m \\ = \frac{a}{b} & & , \text{untuk } n = m \\ = \frac{a}{0} & = \infty & , \text{untuk } n > m \end{array} \right. $ Catatan : Ambil koefisien pangkat tertingginya. $\clubsuit $ Limit tak hingga bentuk akar *). Bentuk pertama, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^2 + bx + c } - \sqrt{ax^2 + px + q } = \frac{b-p}{2\sqrt{a}} $ *). Bentuk kedua, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^n + bx^\frac{n}{2} + c } - \sqrt{ax^n + px^\frac{n}{2} + q } = \frac{b-p}{2\sqrt{a}} $

Pangkat didepan adalah dua kali pangkat kedua dan nilai $ a \, $ sama pada kedua akar.

Contoh : 4). Tentukan hasil limit di tak hingga dari soal nomor 3 di atas, a). $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b). $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c). $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d). $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ f). $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} $ Penyelesaian : a). Pangkat tertingginya $ x ^3 \, $ , artinya ambil koefisien $ x^3 $ , $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{2}{5} $ b). Pangkat tertingginya $ x^8 \, $ , artinya ambil koefisien $ x^8 \, $, $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = \displaystyle \lim_{x \to \infty } \frac{0x^8-2x^2 - 5}{5x^8 - 4x + 3} = \frac{0}{5} = 0 $ c). Pangkat tertingginya $ x^5 \, $ , artinya ambil koefisien $ x^5 $ , $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{0x^5 + 3x^2 - 4x + 1 } = \frac{1}{0} = \infty $ d). Pangkat tertingginya $ x \, $ , artinya ambil koefisien $ x $ , $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 } } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ 3x } = \frac{2}{3} $ e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{b-p}{2\sqrt{a}} = \frac{2-(-1)}{2\sqrt{4}} = \frac{3}{4} $ f). $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} = \frac{b-p}{2\sqrt{a}} = \frac{3-5}{2\sqrt{9}} = \frac{-2}{6} = - \frac{1}{3} $ 5). Tentukan hasil limit tak hingga berikut ini, a). $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) $ b). $ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } $ c). $ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} $ Penyelesaian : a). Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{(x + 2)^2} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x^2 + 4x + 4} \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-5-4}{2\sqrt{1}} \\ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) & = \frac{-9}{2} \end{align} $ b). Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \displaystyle \lim_{x \to \infty } (2x - 3) - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{(2x - 3)^2} - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2-12x + 9} - \sqrt{4x^2 +x - 7 } \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-12-1}{2\sqrt{4}} \\ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \frac{-13}{4} \end{align} $ c). Misalkan $ y = 5^x , \, $ untuk $ x \, $ menuju tak hingga, maka $ y \, $ juga menuju tak hingga, kemudian ambil koefisien pangkat tertingginya $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^{x+2} - 7} \\ & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^x . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{y . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{25y - 7} \\ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \frac{1}{25} \end{align} $

   Silahkan teman-teman juga simak dan pelajari materi limit tak hingga dengan fungsi trigonometri yaitu pada artkel "Limit Tak Hingga Fungsi Trigonometri".Selain itu, ada juga kegunaan dari limit fungsi tak hingga adalah untuk menentukan persamaan asimtot mendatar suatu fungsi.

Artikel Terkait

Gallery Rumus Limit Tak Hingga

Rumus Limit Matematika Fungsi Tak Hingga Contoh Soal

Rumus Cepat Dalam Mengerjakan Limit Tak Hingga

Limit Fungsi Matematika Trigonometri Tak Hingga Contoh

Limit Tak Hingga Trigonometri Polinomial Pecahan Eksonensial

Limit Fungsi Teorema Bentuk Limit Rumus Contoh Guru

Rumus Limit Matematika Fungsi Tak Hingga Contoh Soal

Soal Dan Pembahasan Super Lengkap Limit Tak Hingga

Limit Fungsi Rumus Macam Dan Contoh Soal

Contoh Soal Limit Tak Hingga Bentuk Trigonometri Tasticfasr

Cara Mengerjakan Limit Tak Hingga Idschool

Contoh Soal Limit Trigonometri Tak Hingga Pdf Fasrcam

Bank Soal Dan Pembahasan Matematika Dasar Limit Tak Hingga

Soal Dan Pembahasan Limit Tak Hingga Bentuk Akar 1 3

Cara Mengerjakan Limit Tak Hingga Idschool

Limit Fungsi Matematika Trigonometri Tak Hingga Contoh

Blog Posts Fasralta

Limit Fungsi Teorema Bentuk Limit Rumus Contoh Guru

Limit Fungsi Trigonometri Contoh Soal Dan Cara Menghitung

Cara Cepat Menghitung Limit Fungsi Trigonometri Halaman All

Rumus Cepat Dalam Mengerjakan Limit Tak Hingga

Limit Fungsi Matematika Trigonometri Tak Hingga Contoh

Sifat Sifat Limit Fungsi Dan Contohnya


Belum ada Komentar untuk "Rumus Limit Tak Hingga"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel